主页 > 699509.com >
18888kj.com谁能讲讲博弈论?
发布日期:2020-01-25 14:58   来源:未知   阅读:

  博弈论与游戏有着密切的关系。博弈论,最早是从游戏开始的,如:象棋,桥牌,“石头,剪刀,布”等游戏。人们试图研究,在游戏中如何利用智慧和机智赢得对方,其中又哪些规律,简言之,它研究在竞争环境下,如何决策。

  应用的领域:经济领域中的生产管理,价格竞争,贸易谈判;企业管理领域中的薪酬设计,劳资纠纷;政治领域中的谈判策略,选举策略博弈论与游戏有着密切的关系。

  展开全部博弈论又被称为对策论(Games Theory),是研究具有斗争或竞争性 质现象的理论和方法,它既是现代数学的一个新分支,也是运筹学的一个重要学科。

  博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。1928年冯·诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯·诺意曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。谈到博弈论就不能忽略博弈论天才纳什,纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。 此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的的学科。

  (1)局中人:在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为 “多人博弈”。

  (2)策略:一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。

  (3)得失:一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。

  (5)博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。所谓纳什均衡,开奖网www.kj006.com让咱们来看一下这四!它是一稳定的博弈结果。

  纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。

  这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:偶对(a, b*)≤偶对(a*,b*)≤偶对(a*,b)。

  对于非零和博弈也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:对局中人A的偶对(a, b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对(a*,b*)。

  任何具有有限纯策略的二人博弈至少有一个均衡偶。这一均衡偶就称为纳什均衡点。

  纳什定理的严格证明要用到不动点理论,不动点理论是经济均衡研究的主要工具。通俗地说,寻找均衡点的存在性等价于找到博弈的不动点。

  纳什均衡点概念提供了一种非常重要的分析手段,使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。

  但纳什均衡点定义只局限于任何局中人不想单方面变换策略,而忽视了其他局中人改变策略的可能性,因此,在很多情况下,纳什均衡点的结论缺乏说服力,研究者们形象地称之为“天真可爱的纳什均衡点”。

  塞尔顿(R·Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点,从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡。

  (1)合作博弈——研究人们达成合作时如何分配合作得到的收益,即收益分配问题。

  (2)非合作博弈——研究人们在利益相互影响的局势中如何选决策使自己的收益最大,即策略选择问题。

  (3)完全信息不完全信息博弈:参与者对所有参与者的策略空间及策略组合下的支付有充了解称为完全信息;反之,则称为不完全信息。

  静态博弈:指参与者同时采取行动,或者尽管有先后顺序,但后行动者不知道先行动者的策略。

  考虑这样一个合作博弈:a、b、c、投票决定如何分配100万,他们分别拥有50%、40%、10%的权力,规则规定,当超过50%的票认可了某种方案时才能通过。那么如何分配才是合理的呢?按票力分配,a50万、b40万、c10万c向a提出:a70万、b0、c30万b向a提出:a80万、b20万、c0……

  权力指数:每个决策者在决策时的权力体现在他在形成的获胜联盟中的“关键加入者”的个数,这个“关键加入者”的个数就被称为权利指数。

  夏普里值:在各种可能的联盟次序下,参与者对联盟的边际贡献之和除以各种可能的联盟组合。

  展开全部博弈论(Game Theory),有时也称为对策论,或者赛局理论,应用数学的一个分支, 目前在生物学,经济学,国际关系,计算机科学, 政治学,军事战略和其他很多学科都有广泛的应用。主要研究公式化了的激励结构(游戏或者博弈(Game))间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。 表面上不同的相互作用可能表现出相似的激励结构(incentive structure),所以他们是同一个游戏的特例。其中一个有名有趣的应用例子是囚徒困境(Prisoners dilemma)。

  具有竞争或对抗性质的行为成为博弈行为。在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。比如日常生活中的下棋,打牌等。18888kj.com,博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。

  博弈的分类根据不同的基准也有不同的分类。一般认为,博弈主要可以分为合作博弈和非合作博弈。它们的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。

  从行为的时间序列性,博弈论进一步分为两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。通俗的理解:囚徒困境就是同时决策的,属于静态博弈;而棋牌类游戏等决策或行动有先后次序的,属于动态博弈

  按照参与人对其他参与人的了解程度分为完全信息博弈和不完全信息博弈。完全博弈是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间及收益函数有准确的信息。如果参与人对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的准确信息,在这种情况下进行的博弈就是不完全信息博弈。

  目前经济学家们现在所谈的博弈论一般是指非合作博弈,由于合作博弈论比非合作博弈论复杂,在理论上的成熟度远远不如非合作博弈论。非合作博弈又分为:完全信息静态博弈,完全信息动态博弈,不完全信息静态博弈,不完全信息动态博弈。与上述四种博弈相对应的均衡概念为:纳什均衡(Nash equilibrium),子博弈精炼纳什均衡(subgame perfect Nash equilibrium),贝叶斯纳什均衡(Bayesian Nash equilibrium),精炼贝叶斯纳什均衡(perfect Bayesian Nash equilibrium)。

  博弈论还又很多分类,比如:以博弈进行的次数或者持续长短可以分为有限博弈和无限博弈;以表现形式也可以分为一般型(战略型)或者展开型,等等。

  展开全部博弈的系统学习需要强大的数学基础,但同时博弈的基础理论在生活中的应用相当广泛,像囚徒困境、智猪博弈、恋爱中的博弈、象棋等等,都可以算做博弈的范畴,是一门非常有趣非常实用的学科,以下整理摘录一些基本概念,末了推荐几本经典书籍,楼主好好学习哦~~~

  博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博弈论是个非常重要的理论概念。

  (1)局中人:在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为 “多人博弈”。

  (2)策略:一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。

  (3)得失(也称盈利函数):一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。

  非合作博弈:研究人们在利益相互影响的局势中如何选决策使自己的收益最大,即策略选择问题。

  (2)完全信息不完全信息博弈:参与者对所有参与者的策略空间及策略组合下的支付有充了解称为完全信息;反之,则称为不完全信息。

  静态博弈:指参与者同时采取行动,或者尽管有先后顺序,但后行动者不知道先行动者的策略。香港挂牌最完整之全篇

  常用的研究将上述分类结合起来,将博弈分为四类:完全信息静态博弈、完全信息动态博弈、不完全信息静态博弈和不完全信息动态博弈。

  (1)零和博弈:一个博弈当中参与者的利益严格对立,一方所得永远对于另一方所失,这样的博弈称为零和博弈。

  (2)纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。

  博弈论圈中真正的高手,是能够通过讲故事把博弈论的基本道理向基本没有多少高等数学知识背景的读者们说明白的家伙。董志强教授的这部博弈论科普读物,是他的两部博弈论系列通俗著作写作计划中的第一部,内容涵盖了完全信息博弈论的基本范围,共有11章和数十个故事,加上在恰当的时机和恰当的篇幅给出博弈论的基本概念,让我们在遍及古今中外,人为历史,政治军事,经济管理,心理行为等领域中的故事长廊里酣畅淋漓地感受着博弈的精巧和运筹帷幄的快乐!

  2.《博弈论与信息经济学——当代经济学系列丛书·当代经济学教学参考书系》 张维迎 著

  本书的目的是对博弈论和信息经济学的主要内容和研究方法作比较全面系统的讨论和分析,它可以服务于三个目的:一是作为经济学和相关专业领域大学高年级学生和研究生的教材;二是供未曾修过博弈论的经济学家和其他专业的学者自学用;三是放在书架上作为博弈论和信息经济学的一本参考手册。在写这本书是作者假定读者有中级微观经济学基础,但并不具有博弈论的入门知识,因此,本书对博弈论的核心概念的引入是循序渐进的。本书的主要目的不在于告诉读者博弈论说了些什么,而在于引导读者运用书中介绍的理论分析现实的经济现象。

  本书用每个人都能理解的语言详细、准确且全面讲解了博弈论的分析方法及其在现实中的各种应用。对于2005年诺贝尔经济学奖得主奥曼和谢林的理论,本书也有详细的介绍。